If it's not what You are looking for type in the equation solver your own equation and let us solve it.
l^2+14l-126=0
a = 1; b = 14; c = -126;
Δ = b2-4ac
Δ = 142-4·1·(-126)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10\sqrt{7}}{2*1}=\frac{-14-10\sqrt{7}}{2} $$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10\sqrt{7}}{2*1}=\frac{-14+10\sqrt{7}}{2} $
| -2=a-9/7 | | 4(x-7)=3(2x+1)+6 | | -47=5x+3 | | 2(3b-4)=4b-7 | | 4+n/12=5 | | 9=-3+6+6x | | x+(2x+600)+(3x-800)=19000 | | (5x+3)-(2x-7=) | | 5x+(2^3)x=39 | | (7x6)+3=(3x4)- | | 4v+2=26 | | 5t7=2t | | x-1,5(6x-8)=(2,5-5x)•2,4+2 | | x-9x+12=6-12x+2 | | 11=6+p | | 3z=-4z+56 | | 6v=16+3 | | 5(5n+4)=170 | | 15x-30+10x+5=180 | | x^2-16/2x-12=0 | | 6/15=x/2 | | 2x=24-20x= | | 8-8d=64 | | 9z+4=-5 | | 6,7x+1,2x^2=11,6 | | 6,7x+1,2x=11,6 | | 40+(4-5)=9x | | 4h-3+3=5+3 | | x/3=11/20 | | 2a-2=0+5-5 | | 4x8=14 | | 3n+30=5n+40 |